Kinetics of Xanthan Production When NH3-N Limits Biomass Synthesis and Glucose Limits Polysaccharide Synthesis

Author:

Schweickart R. W.1,Quinlan A. V.1

Affiliation:

1. Center for Biochemical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706

Abstract

The bacterium Xanthomonas campestris, which synthesizes the commercially important polysaccharide xanthan, was grown aseptically in 1.2 L fermenters using semicontinuous cell culture technique (d′ = 0.0035 h−1). The effects of carbon-substrate concentration on xanthan production were investigated at three initial glucose concentrations (G0 = 15, 20, 25 g/L). Cell biomass synthesis was nitrogen-limited by use of a chemically defined medium that contained NH3-N as the sole nitrogen source at a concentration where it was exhausted before glucose. A linear relationship between biomass synthesis and NH3-N depletion was observed. This relationship remained valid only until NH3-N exhaustion, after which biomass concentration slowly rose another 20 percent before declining. Another linear relationship was found between xanthan synthesis and glucose uptake. This relationship was unaffected by the disappearance of NH3-N and held through glucose exhaustion. The quasi-stoichiometric yield coefficients obtained for each linear relationship were not affected by G0. Biomass synthesis kinetics showed no variation with G0 before NH3-N exhaustion; afterwards, cell biomass decline was delayed by increasing G0. Xanthan synthesis kinetics displayed no detectable response to depletion of NH3-N and plateauing of biomass concentration; however, there was a marked slow down in the net rate of xanthan synthesis and a drop in xanthan yield after cell biomass decline became noticeable.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3