Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms

Author:

Pátý Marek1,Cernat Bogdan C.1,De Maesschalck Cis1,Lavagnoli Sergio1

Affiliation:

1. Turbomachinery and Propulsion Department, von Karman Institute for Fluid Dynamics, Rhode Saint Genèse 1640, Belgium e-mail:

Abstract

The leakage flows within the gap between the tips of unshrouded rotor blades and the stationary casing of high-speed turbines are the source of significant aerodynamic losses and thermal stresses. In the pursuit for higher component performance and reliability, shaping the tip geometry offers a considerable potential to modulate the rotor tip flows and to weaken the heat transfer onto the blade and casing. Nevertheless, a critical shortage of combined experimental and numerical studies addressing the flow and loss generation mechanisms of advanced tip profiles persists in the open literature. A comprehensive study is presented in this two-part paper that investigates the influence of blade tip geometry on the aerothermodynamics of a high-speed turbine. An experimental and numerical campaign has been performed on a high-pressure turbine stage adopting three different blade tip profiles. The aerothermal performance of two optimized tip geometries (one with a full three-dimensional contoured shape and the other featuring a multicavity squealer-like tip) is compared against that of a regular squealer geometry. In the second part of this paper, we report a detailed analysis on the aerodynamics of the turbine as a function of the blade tip geometry. Reynolds-averaged Navier-Stokes (RANS) simulations, adopting the Spalart–Allmaras turbulence model and experimental boundary conditions, were run on high-density unstructured meshes using the numecafine/open solver. The simulations were validated against time-averaged and time-resolved experimental data collected in an instrumented turbine stage specifically setup for the simultaneous testing of multiple blade tips at scaled engine-representative conditions. The tip flow physics is explored to explain variations in turbine performance as a function of the tip geometry. Denton's mixing loss model is applied to the predicted tip gap aerodynamic field to identify and quantify the loss reduction mechanisms of the alternative tip designs. An advanced method based on the local triple decomposition of relative motion is used to track the location, size and intensity of the vortical flow structures arising from the interaction between the tip leakage flow and the main gas path. Ultimately, the comparison between the unconventional tip profiles and the baseline squealer tip highlights distinct aerodynamic features in the associated gap flow field. The flow analysis provides guidelines for the designer to assess the impact of specific tip design strategies on the turbine aerodynamics and rotor heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3