Numerical Investigations on the Sealing Performance of a Reciprocating Seal Based on the Inverse Lubrication Method

Author:

Wang Jun1,Li Yongkang1,Lian Zisheng1

Affiliation:

1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan 030024, China e-mail:

Abstract

The work presented in this paper describes a new approach to calculate the film profile, friction, and fluid transport of a reciprocating U-cup seal used in a hydraulic piston pump. An innovative partial lubrication model of the seal is developed, which connects the inverse hydrodynamic lubrication method and Greenwood–Williamson asperity contact model. Finite element models (FEM) were established to simulate deformation behavior under-mounted and pressurized process using finite element code ansys. Based on the finite element simulations, corresponding numerical calculations have been made using the matlab with the inverse hydrodynamic lubrication and asperity contact theories. The accuracy of these models was validated against existing experimental data to ensure that they can predict the sealing performance sufficiently. The effects of the operating parameters as well as the magnitude of interference on the sealing performance in terms of friction, fluid transport, and film thickness were discussed. The results of the simulation indicate that the interference fit, sealed pressure, and rod velocity play significant roles to improve the wear and seizure resistance capability that is critical to the service life of the seal.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3