Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat

Author:

Zhang Yi1,Lou Zichen1ORCID,Wei Fu1,Lin Shuai1,Hu Ling1,He Wei1ORCID

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu City, Sichuan, P.R. China

Abstract

This paper presents an experimental and theoretical investigation into the factors influencing the sealing performance of combined slip rings. Factoring in the frictional heat from micro convex bodies and convective heat exchange between the slip ring, oil film, and air, we formulate a thermoelastic flow hybrid lubrication model for the combined slip ring seal. This model calculates the distribution of oil film thickness, pressure, temperature, velocity, and viscosity in the sealing zone, drawing on the generalized average Reynolds equation and the transmembrane average energy equation, in conjunction with the heat conduction equation of the slip ring. Utilizing the Archard wear model, we also examine the wear characteristics of the combined slip ring seal, providing insights into seal wear under these conditions. The model enables an analysis of the interplay between parameters and their impact on seal performance. The method proposed accurately predicts friction and leakage in line with experimental data, thereby providing a theoretical foundation for further numerical investigation of seal characteristics.

Funder

Natural Science Foundation of Sichuan Province

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3