Investigating the Effect of Pipe Inclination on Two-Phase Gas-Liquid Flows Using Advanced Instrumentation

Author:

Abdulahi Abolore1,Abdulkareem Lokman A.1,Sharaf Safa1,Abdulkadir Mukhtar1,Hernandez Perez Valente1,Azzopardi Barry J.1

Affiliation:

1. University of Nottingham, Nottingham, UK

Abstract

Pipes that make up oil and gas wells are not vertical but could be inclined at any angle between the vertical and the horizontal which is a significant technology of modern drilling. Hence, this study has been undertaken to look at the effect of inclination on flow characteristics especially at 10 degrees from both horizontal and vertical. Air/silicone oil flows in a 67 mm slightly deviated pipe have been investigated using advanced instrumentation: Wire Mesh Sensor Tomography (WMS) and Electrical Capacitance Tomography (ECT). They provide time and cross-sectionally resolved data on void fraction. Both the ECT probes and WMS were mounted on the inclined pipes upstream just at the point where flows were fully developed. By keeping the liquid flow rate constant at 10 litres/min (or liquid superficial velocity of 0.052m/s), gas flow rate was varied from 10 litres/min to 1000 litres/min (or gas superficial velocity from 0.05m/s to 4.7m/s). Then other values of liquid superficial velocity were considered. Visual observations were considered. Time series and void fraction were then measured for WMS while time series and liquid holdup were measured for ECT. The raw data were processed and then interpreted for proper analysis. From an analysis of the output from the tomography equipment, flow patterns were identified using both the reconstructed images as well as the characteristic signatures of Probability Density Function (PDF) plots of the time series of cross-sectionally averaged void fraction as suggested by some authors. Bubbly, slug and churn flows were observed for 10° from vertical pipe while bubbly, plug as well as slug flow when the pipe was inclined at 10° from horizontal. Examples of the PDFs are well illustrated which compares the use of ECT with WMS. In addition, statistical data such as Power Spectral Density (PSD), dominant frequency, mean void fraction as well as the structure velocities from cross correlation of the two planes of ECT have been identified.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3