Two-Phase Upward Flow in a Slightly Deviated Pipe

Author:

Abdulahi Abolore1,Azzopardi Barry J.2

Affiliation:

1. Process and Environmental Engineering Division, University of Nottingham, Nottingham, NG7 2RD, UK e-mail:

2. Process and Environmental Engineering Division, University of Nottingham, Nottingham, NG7 2RD, UK

Abstract

This study was undertaken to look at the effect of a slight inclination of pipe on upward flow characteristics especially at 10 deg from vertical position. Air-silicone oil flows in a 67 mm diameter pipe have been investigated using a capacitance wire mesh sensor (WMS) and electrical capacitance tomography (ECT). They provide time and cross-sectionally resolved data on void fraction. Superficial gas and liquid velocities of 0.05–1.9 and 0.05–0.5 were studied. Statistical methods and visual observation methods were used to characterize the fluid flows obtained into different flow patterns. From the output results from the tomography instruments, flow patterns were identified using both the reconstructed images as well as the characteristic signatures of Probability density function (PDF) plots of the time series of cross-sectionally averaged void fraction. Bubbly, cap bubble, slug, and churn flows were observed when the pipe was deviated by 10 deg from vertical pipe for the range of superficial gas velocities considered.

Publisher

ASME International

Subject

Mechanical Engineering

Reference41 articles.

1. Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modeling;Multiphase Sci. Technol.,1986

2. Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows;Int. J. Multiphase Flow,1997

3. Two-Phase Flow Through Vertical, Inclined or Curved Pipe;J. Petrol. Tech.,1974

4. Empirical Equations to Predict Flow Patterns in Two-Phase Inclined Flow;Int. J. Multiphase Flow,1985

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3