Simultaneous Heat Transfer and Pressure Drop Measurements for a Horizontal Micro-Tube

Author:

Tam Lap Mou1,Tam Hou Kuan2,Ghajar Afshin J.3

Affiliation:

1. University of Macau; Institute for the Development and Quality, Macau, China

2. University of Macau, Macau, China

3. Oklahoma State University, Stillwater, OK

Abstract

Heat transfer and pressure drop measurements for horizontal macro-tubes under uniform wall heat flux boundary condition have been conducted by various researchers in recent years. From their studies, it was shown that good agreements were observed in the laminar and turbulent regions. However, for the transition region, the heat transfer and pressure drop characteristics depended on various factors, such as inlet configuration, buoyancy effect, and surface roughness. In a recent study by Tam et al. (2010), they measured the heat transfer and pressure drop simultaneously for a horizontal macro-tube with and without internally micro-fins and concluded that under the heating condition, the transition Reynolds number range for heat transfer and pressure drop were completely different. The transition Reynolds number range was documented in their research in great detail. However, for horizontal micro-tubes, there is no information in the literature on the simultaneous behavior of the heat transfer and pressure drop, especially in the transition region. In order to fill in this gap, an experimental setup was built to measure the heat transfer and pressure drop simultaneously for a horizontal micro-tube under uniform wall heat flux boundary condition. Water was used as the test fluid and the test section was a stainless steel micro-tube with 1000μm diameter. For heat transfer, the results indicated that the micro-tube had an earlier start and end of transition compared to the macro-tube and, in the turbulent region, an increase in heat transfer due to the surface roughness was observed. For friction factor under isothermal condition, the micro-tube had a narrower transition range due to the roughness compared to the macro-tube. For friction factor under heating condition, the laminar data and the start of transition were different from the isothermal case, and the effect of heating was not seen on the end of transition.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3