Affiliation:
1. Case Western Reserve University, Cleveland, OH
Abstract
This work is a continuation of previous investigations aimed at developing an innovative microfabricated air-cooling technology that employs an electrohydrodynamic corona discharge (i.e. ionic wind pump) [1], [2]. This technology enables the miniaturization of cooling systems for next generation electronics. Our single ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. Two-dimensional (2-D) and three-dimensional (3-D) simulations using COMSOL Multiphysics™ are additionally employed to predict the temperature distribution, the flow field, and the heat removal capacity of the device in operation. One such model utilizes a small gap between collector and emitter electrodes and demonstrates an improvement in the COP (coefficient of performance) of a single device. Comparisons are made with experimental temperature data on an actual device. The purpose of this work is therefore to optimize the performance of a single microfabricated ionic wind pump to enable the development of an array of these elements for use in larger-scale heat transfer applications.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献