Abstract
Abstract
Ionic wind, an induced phenomenon during corona discharge, possessing the features of silent operation and no moving parts, has a wide range of applications. Ionic wind generation is accompanied by complex physical processes, involving gas ionization, ion recombination, flow, and various chemical reactions, as well as mutual couplings between some of them. Therefore, understanding the corona discharge process and ionic wind generation is crucial for researchers and engineers to better utilize this phenomenon in practical applications. In this review, the principles of corona discharge and its induced ionic wind are presented. Subsequently, ionic wind generators are discussed according to their applications, and the corresponding advances based on experimental studies and numerical simulations are also reviewed. Moreover, the challenges of transitioning the ionic wind technology from laboratory studies to practical applications are discussed. These challenges include the excessively high onset voltage of the corona, ozone emission, and influence of environmental conditions. Furthermore, the mechanisms of these barriers and several effective approaches for mitigating them are provided. Finally, some future research prospects and the conclusions are presented.
Funder
National Natural Science Foundation of China
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献