Assessing Rotation/Curvature Corrections to Eddy-Viscosity Models in the Calculations of Centrifugal-Compressor Flows

Author:

Dufour G.1,Cazalbou J.-B.1,Carbonneau X.1,Chassaing P.1

Affiliation:

1. ISAE, Université de Toulouse, BP 54032 Toulouse Cedex 4, France

Abstract

Rotation and curvature (RC) effects on turbulence are expected to impact losses and flow structure in turbomachines. This paper examines two recent eddy-viscosity-model corrections devised to account for these effects: the Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302) correction to the model of Spalart and Allmaras (1994, “A One-Equation Turbulence Model for Aerodynamic Flows,” Rech. Aerosp., 1, pp. 5–21) and the correction of Cazalbou et al. (2005, “Two-Equation Modeling of Turbulent Rotating Flows,” Phys. Fluids., 17, p. 055110) to the (k,ϵ) model. The method of verification and validation is applied to assess the impact of these corrections on the computation of a centrifugal-compressor test case. First, a review of RC effects on turbulence as they apply to centrifugal compressors is made. The two corrected models are then presented. Second, the Radiver open test case (Ziegler K. U., Gallus, H. E., and Niehuis R., 2003, “A Study on Impeller Diffuser Interaction Part 1: Influence on the Performance,” ASME J. Turbomach, 125, pp. 173–182) is used as a basis for the assessment of the two corrections. After a physical-consistency analysis, the Richardson extrapolation is applied to quantify the numerical errors involved in all the calculations. Finally, experimental data are used to perform validation for both global and local predictions. The consistency analysis shows that both corrections lead to significant changes in the turbulent field, in perfect agreement with the underlying theoretical considerations. The uncertainty analysis shows that the predictions of the global performances are more sensitive to grid refinement than they are to RC turbulence modeling. However, the opposite conclusion is drawn with regard to the prediction of some local flow properties: Improvements are obtained with the RC corrections, the best results being observed for the RC-corrected (k,ϵ) model.

Publisher

ASME International

Subject

Mechanical Engineering

Reference28 articles.

1. Turbulence Modeling for Complex Shear Flows;Lakshminarayana;AIAA J.

2. Turbulence Modeling With Application to Turbomachinery;Bradshaw;Prog. Aerosp. Sci.

3. Stabilization and Destabilization of Turbulent Shear Flow in a Rotating Fluid;Tritton;J. Fluid Mech.

4. Bradshaw, P. , 1973, “Effects of Streamline Curvature on Turbulent Flows,” AGARD, Agardograph No. 169.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3