Application of Advanced RANS Turbulence Models for the Prediction of Turbomachinery Flows

Author:

Casartelli Ernesto1,Mangani Luca1,Roos Launchbury David1,Del Rio Armando1

Affiliation:

1. Department of Mechanical Engineering, Lucerne University of Applied Sciences and Arts, Technikumstrasse 21, Horw 6048, Switzerland

Abstract

Abstract The current trend in turbomachinery toward broader operating characteristics requires that operating points in the off-design region can be captured accordingly from the simulation models. Complex processes like separation and vortex formation/dissipation occur under these conditions. Linear two equation models are often not able to represent these effects correctly since their derivation is based on oversimplifications, such as the Boussinesq hypothesis, which makes it impossible to capture anisotropic turbulence. Advanced RANS models are usually not considered in the design process of turbomachines because (1) they are usually more delicate with regards to stability and convergence behavior and (2) require additional computational effort. To make the usage of advanced RANS models more applicable for complex turbomachinery simulations, a selected group of models were implemented into a robust framework of a pressure-based fully coupled solver. To further enhance stability, coupling terms between the turbulent transport equations were derived for several models. Anisotropic turbulence is introduced by computing an algebraic expression or by solving the transport equations for the Reynolds stress components. The evaluation of the models is performed on the RWTH Aachen “Radiver” centrifugal compressor case with vaned diffuser. For design conditions and operation points near the stability limit, all investigated turbulence models predict the compressor characteristic. Operation points in the choking region, on the other hand, are only predicted well by anisotropic models. The good results and improved convergence behavior of the advanced RANS models clearly indicates their applicability in the design process of turbomachines.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine;Mueller;Int. J. Turbomach. Propul. Power,2017

2. Adjoint Methods for Car Aerodynamics;Othmer;J. Math. Indus.,2014

3. CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine;Mueller;Int. J. Turbomach. Propul. Power,2017

4. Near-Wall Turbulence Closure Modeling Without “Damping Functions;Durbin;Theor. Comput. Fluid Dyn.,1991

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3