Particle Image Velocimetry Investigation of the Coherent Structures in a Leading-Edge Slat Flow

Author:

Richard Patrick R.1,John Wilkins Stephen1,Hall Joseph W.2

Affiliation:

1. Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada e-mail:

2. Mem. ASME Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada e-mail:

Abstract

Air traffic volume is expected to triple in the U.S. and Europe by 2025, and as a result, the aerospace industry is facing stricter noise regulations. Apart from the engines, one of the significant contributors of aircraft noise is the deployment of high-lift devices, like leading-edge slats. The unsteady turbulent flow over a leading-edge slat is studied herein. In particular, particle image velocimetry (PIV) measurements were performed on a scale-model wing equipped with a leading-edge slat in the H.J. Irving–J.C.C. Picot Wind Tunnel. Two Reynolds numbers based on wing chord were studied: Re = 6 × 105 and 1.3 × 106. A snapshot proper orthogonal decomposition (POD) analysis indicated that differences in the time-averaged statistics between the two Reynolds numbers were tied to differences in the coherent structures formed in the slat cove shear layer. In particular, the lower Reynolds number flow seemed to be dominated by a large-scale vortex formed in the slat cove that was related to the unsteady flapping and subsequent impingement of the shear layer onto the underside of the slat. A train of smaller, more regular vortices was detected for the larger Reynolds number case, which seemed to cause the shear layer to be less curved and impinge closer to the tail of the slat than for the lower Reynolds number case. The smaller structures are consistent with Rossiter modes being excited within the slat cove. The impingement of the shear layers on and the proximity of the vortices to the slat and the main wing are expected to be strong acoustic dipoles in both cases.

Publisher

ASME International

Subject

Mechanical Engineering

Reference48 articles.

1. Aeroacoustics of Flight Vehicles, Theory and Practice–Volume 1: Noise Sources,1991

2. Noise Characteristics of Aircraft High Lift Systems;AIAA J.,2003

3. Characterization of Unsteady Flow Structures Near Leading-Edge Slat—Part I: PIV Measurements,2004

4. Investigation of Aeroacoustic Noise Sources by Simultaneous PIV and Microphone Measurement,2006

5. PIV Measurements Near a Leading-Edge Slat,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3