Submerged Vortex Morphology and Pressure Fluctuation Characteristics in Intake Sump

Author:

Abstract

This study investigates the characteristics of submerged vortices in an intake sump through a combination of numerical simulations, experimental validations, and advanced modeling techniques. The aim of this study is to gain insights into the complex flow patterns and vortex structures within the sump, focusing on their behavior under varying flow rates. The Shear Stress Transfer (SST) k-ω model is utilized to capture turbulence, and the Volume of Fluid (VOF) method is employed to visualize the water-air interface. Model tests are conducted to validate the simulations. The findings suggest that under low flow conditions, the flow beneath the bell mouth becomes highly turbulent, leading to the formation of a complex vortex system with three distinct high-pressure zones. With increasing flow rates, the shape and strength of these high-pressure zones fluctuate, and a quadrupole vortex structure emerges at the sump bottom. This quadrupole vortex plays a pivotal role in the transformation of a floor-attached vortex upward, culminating in a dual vortex column structure. This structure, in turn, generates additional low-amplitude pressure pulsations. Wall-attached vortices are also observed on both sides of the inlet pipe, a result of flow stratification due to velocity disparities. The insights gained from this study contribute to a deeper understanding of intake sump dynamics and offer valuable guidance for designing and optimizing fluid systems to mitigate potential turbulence-related issues.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3