Scaling Laws for the Peak Overpressure of a Cannon Blast

Author:

Carson Robert A.1,Sahni Onkar2

Affiliation:

1. U.S. Army/Armament Research, Development, and Engineering Center (ARDEC)/Benet Laboratories, Watervliet Arsenal, Watervliet, NY 12189

2. Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

For large cannons, blast overpressure can have a detrimental effect on the crew in the near field (i.e., within a distance of 50 tube diameters or calibers from the muzzle center) as well as on the support personnel and equipment in the far field (i.e., at a distance greater than 50 calibers). Therefore, an efficient method to determine the peak overpressure due to a cannon blast is highly desired. In this study, we investigate scaling laws for the peak overpressure, due to the primary blast of a large cannon, with the aim that they can be applied as an efficient method to evaluate the peak overpressure in the far field. We explore two types of scaling laws; each type is based on a power-law model involving a prefactor and an exponent as model parameters. The two types of the power-law models differ in the way they incorporate the polar angle dependence. The first type was proposed by Fansler and Schmidt (1983, “The Prediction of Gun Muzzle Blast Properties Utilizing Scaling,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARBRL-TR-02504). They developed a muzzle-center based scaling law (MCSL) in which the polar angle dependence was incorporated through a reference length scale to define a nondimensional or scaled radial distance from the muzzle center and the model parameters were independent of the polar angle. They calibrated the parameters by employing least-squares fit to a wide range of experimental data. In this study, we recalibrated or updated the parameters for the current cannon by using the numerical simulation data for the cannon blast in the near field. Additionally, we developed a second type of scaling law in which the radial distance is defined from the blast center (in contrast to the muzzle center) and scaled using the inner tube diameter. In this model, the angular dependence is incorporated directly into the model parameters. For this model too, we calibrated the parameters by using the numerical simulation data. We observe that both the modified version of the muzzle-center based scaling law as well as the blast-center based scaling law (BCSL) show a significantly closer fit to the numerical and experimental data and achieve a similar level of accuracy. This indicates that the current form or structure of the two types of power-law based scaling models is able to fit well with the near-field data; however, the current methodology requires a calibration process for a given cannon of interest. In the future, with far field data, we plan to evaluate predictions in the far field.

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion;Proc. R. Soc. London. Ser. A,1950

2. The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945;Proc. R. Soc. London. Ser. A,1950

3. Smith, F., 1974, “A Theoretical Model of the Blast From Stationary and Moving Guns,” First International Symposium on Ballistics, Orlando, FL, Nov. 13–15, 1974.

4. Description of Muzzle Blast by Modified Ideal Scaling Models;Shock Vib.,1998

5. A Parametric Investigation of Muzzle Blast,1993

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3