Aerodynamic Loading Induced by Muzzle Flows on Small Caliber Spin Stabilized Projectiles

Author:

Chen Chuanlin1,Xu Hui1,Huang Chenlei1,Li Zhongxin1,Wu Zhilin1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

Abstract

Abstract In this study, we examined the aerodynamic loading on a small caliber rifle (spin stabilized) projectile moving in a muzzle flow field using an element method to analyze the loading and the effect of the angle of attack (for small angles from 0 to 3 deg) on the different components. The temporal pressure distribution on the projectile, which forms the basis of the element method, was computed using a computational fluid dynamics (CFD) analysis combined with a classical interior ballistics model. Then, a high-speed optical experiment was conducted to verify the results of the CFD method and ensure the accuracy of the calculations. The results were as follows: (a) similar to a large caliber projectile, the total axial force, which consisted primarily of the axial forces on the base and boattail, was found to have an inverse exponential relationship with time; (b) the overall lift was a combination of the lift of the base, boattail, cylinder, and nose; and (c) the interaction between the pitch moment of the base and that of the boattail was found to be the primary contributing factor to the total pitch moment. Based on these results, we recommend that the characteristics of the base and boattail be considered when specifying the geometric configuration of a projectile.

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Firing Accuracy Evaluation of Electromagnetic Railgun Based on Multicriteria Optimal Latin Hypercube Design;IEEE Trans. Plasma Sci.,2017

2. Projectile Aerodynamics Overtaking a Shock Wave;J. Spacecr. Rockets,2008

3. Empirical Relationship for Muzzle Exit Pressure in a 155 mm Gun Tube;Wit Trans. Modell. Simul.,2007

4. Mathematical Description of Projectile Shot Exit Dynamics (Set-Forward);ASME J. Appl. Mech.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3