Implementation of Rectangular Vortex Generator Pairs to Improve Film Cooling Effectiveness on Transonic Rotor Blade Endwall

Author:

Li Jinjin1,Yan Xin1,He Kun2,Goldstein Richard J.3

Affiliation:

1. Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, China

2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

3. Department of Mechanical Engineering, Heat Transfer Laboratory, University of Minnesota, Minneapolis, MN-55455

Abstract

Abstract The rectangular vortex generator pairs (RVGPs) are arranged upstream of the film cooling holes to achieve better coolant coverage on the endwall near the pressure-side corner area. The endwall film cooling effectiveness distributions under transonic flow conditions are numerically calculated for the single RVGP and double rows of RVGPs cases. At first, the effects of three geometrical parameters (i.e., the distance between RVGP and cooling hole, height of RVGP and attack angle of RVGP) on endwall film cooling effectiveness are studied with a single hole and RVGP at different mainstream inlet Reynolds numbers and blowing ratios. Then, the double rows of RVGPs are applied to further enhance the overall film cooling effectiveness on the blade endwall. The results show that the implementation of RVGPs significantly enhances the film cooling effect on transonic blade endwall at a pressure-side corner area. With the increase of RVGP height, the lateral coolant coverage on the endwall corner area is improved. However, by decreasing the distance between the vortex generator pair and cooling hole, the film cooling effectiveness downstream of the cooling holes is increased. The attack angle of RVGP mainly affects the shape of coolant spreading on endwall surface. The RVGP with optimum dimensions and arrangement is able to suppress the coolant from lifting off the endwall and increase the coolant diffusion near the endwall. Compared with no vortex generator case, the area-averaged film cooling effectiveness on endwall with double rows of RVGPs is improved by 13.16%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference43 articles.

1. Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades;ASME J. Eng. Gas Turbines Power,1984

2. Gas Turbine Film Cooling;J. Propul. Power,2006

3. Hot Gas Path Heat Transfer Characteristics/Active Cooling of Turbine Components;Amano,2008

4. Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection;ASME J. Turbomach.,1996

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3