On the Role of Coriolis Force in a Two-Dimensional Thermally Driven Flow in a Rotating Enclosure

Author:

Hasan Nadeem1,Sanghi Sanjeev1

Affiliation:

1. Department of Applied Mechanics, IIT Delhi, New Delhi, INDIA-110016

Abstract

In this work the role of Coriolis forces in the evolution of a two-dimensional thermally driven flow in a rotating enclosure of arbitrary geometry is discussed. Contrary to the claims made in some of the studies involving such class of flows that there is an active involvement of the these forces in the dynamics of the flow, it is shown that the Coriolis force does not play any role in the evolution of the velocity and temperature fields. This is theoretically demonstrated by recognizing the irrotational character of the Coriolis force in such class of flows. It is further shown that the presence of the irrotational Coriolis force affects only the pressure distribution in the rotating enclosure. The theoretical deductions apply quite generally to any geometry and thermal boundary conditions associated with the enclosure. The numerical results for the problem of two-dimensional thermally driven flow of air (Pr=0.71) in a circular rotating enclosure provide direct evidence of the theoretical deductions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3