Effect of dual-rotation on MHD natural convection of NEPCM in a hexagonal-shaped cavity based on time-fractional ISPH method

Author:

Raizah Zehba,Aly Abdelraheem M.

Abstract

AbstractThe time-fractional derivative based on the Grunwald–Letnikove derivative of the 2D-ISPH method is applying to emulate the dual rotation on MHD natural convection in a hexagonal-shaped cavity suspended by nano-encapsulated phase change material (NEPCM). The dual rotation is performed between the inner fin and outer hexagonal-shaped cavity. The impacts of a fractional time derivative $$\alpha$$ α $$\left( {0.92 \le \alpha \le 1} \right)$$ 0.92 α 1 , Hartmann number Ha $$\left( {0 \le Ha \le 80} \right)$$ 0 H a 80 , fin length $$\left( {0.2 \le L_{Fin} \le 1} \right)$$ 0.2 L Fin 1 , Darcy parameter Da $$\left( {10^{ - 2} \le Da \le 10^{ - 4} } \right)$$ 10 - 2 D a 10 - 4 , Rayleigh number Ra $$\left( {10^{3} \le Ra \le 10^{6} } \right)$$ 10 3 R a 10 6 , fusion temperature $$\theta_{f}$$ θ f $$\left( {0.05 \le \theta_{f} \le 0.8} \right)$$ 0.05 θ f 0.8 , and solid volume fraction $$\varphi$$ φ $$\left( {0 \le \varphi \le 0.06} \right)$$ 0 φ 0.06 on the velocity field, isotherms, and mean Nusselt number $$\overline{Nu}$$ Nu ¯ are discussed. The outcomes signaled that a dual rotation of the inner fin and outer domain is affected by a time-fractional derivative. The inserted cool fin is functioning efficiently in the cooling process and adjusting the phase change zone within a hexagonal-shaped cavity. An increment in fin length augments the cooling process and changes the location of a phase change zone. A fusion temperature $$\theta_{f}$$ θ f adjusts the strength and position of a phase change zone. The highest values of $$\overline{Nu}$$ Nu ¯ are obtained when $$\alpha = 1$$ α = 1 . An expansion in Hartmann number $$Ha $$ Ha reduces the values of $$\overline{Nu}$$ Nu ¯ . Adding more concentration of nanoparticles is improving the values of $$\overline{Nu}$$ Nu ¯ .

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3