Cyclic Constitutive Response and Effective S–N Diagram of M50 NiL Case-Hardened Bearing Steel Subjected to Rolling Contact Fatigue

Author:

Bhattacharyya Abir1,Pandkar Anup1,Subhash Ghatu1,Arakere Nagaraj2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611

2. Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 e-mail:

Abstract

A combined experimental and numerical method is developed to estimate the continuously evolving cyclic plastic strain amplitudes in plastically deformed subsurface regions of a case-hardened M50 NiL steel rod subjected to rolling contact fatigue (RCF) over several hundred million cycles. The subsurface hardness values measured over the entire plastically deformed regions and the elastoplastic von Mises stresses determined from the three-dimensional (3D) Hertzian contact finite element (FE) model have been used in conjunction with Neuber's rule to estimate the evolved cyclic plastic strain amplitudes at various points within the RCF-affected zone. The cyclic stress–strain plots developed as a function of case depth revealed that cyclic hardening exponent of the material is greater than the monotonic strain-hardening exponent. Effective S–N diagram for the RCF loading of the case-hardened steel has been presented and the effect of compressive mean stress on its fatigue strength has been explained using Haigh diagram. The compressive mean stress correction according to Haigh diagram predicts that the allowable fatigue strength of the steel increases by a factor of two compared to its fatigue limit before mean stress correction, thus potentially allowing the rolling element bearings to operate over several hundred billion cycles. The methodology presented here is generalized and can be adopted to obtain the constitutive response and S–N diagrams of both through- and case-hardened steels subjected to RCF.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3