Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single-Stage Turbine

Author:

Dorney Daniel J.1,Sondak Douglas L.2

Affiliation:

1. Virginia Commonwealth University, Department of Mechanical Engineering, Richmond, VA 23113

2. Boston University, Office of Information Technology, Boston, MA 02215

Abstract

Experimental data have shown that combustor temperature nonuniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location, or clocking, of the first-stage vane airfoils can be used to minimize the adverse effects of the hot streaks due to the hot fluid mixing with the cooler fluid contained in the vane wake. In addition, the effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have been quantified. In the present investigation, three-dimensional unsteady Navier–Stokes simulations have been performed for a single-stage high-pressure turbine geometry operating in high subsonic flow to study the effects of tip clearance on hot streak migration. Baseline simulations were initially performed without hot streaks to compare with the experimental data. Two simulations were then performed with a superimposed combustor hot streak; in the first the tip clearance was set at the experimental value, while in the second the rotor was allowed to scrape along the outer case (i.e., the limit as the tip clearance goes to zero). The predicted results for the baseline simulations show good agreement with the available experimental data. The simulations with the hot streak indicate that the tip clearance increases the radial spreading of the hot fluid, and increases the integrated rotor surface temperature compared to the case without tip clearance. [S0889-504X(00)02204-2]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3