Dual-Laser Probe Measurement of Blade-Tip Clearance

Author:

Dhadwal H. S.1,Kurkov A. P.2

Affiliation:

1. Integrated Fiber Optic Systems, Inc., 25 East Loop Road, Stony Brook, New York 11790

2. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

This paper describes two dual-laser probe integrated fiber optic systems for measuring blade tip clearance in rotating turbomachinery. The probes are nearly flush with the casing inner lining, resulting in minimal flow disturbance. The two probes are closely spaced in a circumferential plane and are slanted at an angle relative to each other so that the blade tip traverse time of the space between the two laser beams varies with the tip radius, allowing determination of the tip clearance at the rotor operating conditions. The tip clearance can be obtained for all the blades in a rotor with a single system, provided there are no synchronous vibrations present at a particular operating condition. These probes were installed in two holders; one provided an included angle between the probes of 20 deg, and the other provided an included angle of 40 deg. The two configurations were calibrated in a vacuum spin rig facility that is capable of reproducing realistic blade tip speeds.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3