Novel resistor-capacitor (RC) network-based capacitance signal conditioning circuit for tip clearance measurement on gas turbine engine

Author:

Satish TN1ORCID,Vivek A2,Anagha SN1,Rao ANV1,Uma G2,Umapathy M2,Chandrasekhar U3,Kiran G1

Affiliation:

1. Gas Turbine Research Establishment, Bangalore, Karnataka, India

2. Instrumentation and Control Engineering Department, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

3. Vel Tech University, Chennai, Tamil Nadu, India

Abstract

Blade tip clearance is a critical engine health parameter measured on gas turbines. Increase in tip clearance results in decreased efficiency, whereas with decrease in clearance due to thermal and centrifugal loads, rotor blades might rub the engine case. Various sensing techniques are being used, among them, capacitance-based systems are widely used by many engine houses. Among the capacitance conditioning circuits, resistor-capacitor series network-based circuits are simple to implement but pose many challenges during practical development. During the current work, the authors have designed a novel capacitance conditioning circuit combining resistor-capacitor series network, instrumentation amplifiers, and direct current–direct current converters. Performance of the developed capacitance conditioning electronics was evaluated through lab testing and tip clearance measurement on fan stage of an aero gas turbine engine. The prototype conditioner circuit has efficiently conditioned and resolved small capacitances varying from 1.25 pF to 0.00413 pF for running clearances between 0.4 mm and 3 mm, respectively. The developed electronics produced high output with signal-to-noise ratio of 58.1 dB, resolution of 2.5 µm, bandwidth of about 700 kHz, and an accuracy of about 98%. This development has culminated towards miniaturization of the total electronics and has the potential to get developed as smart capacitance sensor. This paper explains the practical aspects and challenges involved while designing and developing such practical conditioning circuits.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3