Numerical Investigation of Equivalence Ratio Effects on a Converted Diesel Engine Using Natural Gas

Author:

Aktas Fatih1

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, Gazi University, 06570 Maltepe, Ankara, Turkey

Abstract

Abstract In this study, a diesel tractor engine is numerically modeled to run entirely on natural gas by installing a natural gas fuel injector on the intake manifold and assembling a spark plug in lieu of a diesel injector. In the numerical study, the methane chemical kinetic mechanism representing natural gas, Reynolds-averaged Navier–Stokes (RANS) k–e turbulence, and the G-equation combustion model were used. The spark-ignition time was assumed to be 719.5 crank angle degree (CAD), which was the start of the diesel injection time. Analysis was carried out at 2300 revolutions per minute (rpm), at a high compression ratio of 17.5:1, at a fixed spark-ignition time, and at eight different equivalence ratios under full load. The equivalence ratio was changed by keeping the air mass constant and reducing the mass of the fuel. The effects of the obtained equivalence ratio on engine performance, combustion characteristics, and emission values were investigated. The results revealed that natural gas could be used up to Φ = 0.60 without affecting performance, increasing emissions, or exceeding the knock limit compared with the diesel cycle. In addition, it was observed that ultralow (below 10 particulate per million (ppm)) emission values could be obtained by further reducing the equivalence ratio, providing a uniform thermal field.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3