Motion Characteristics Analysis of a Novel 2R1T 3-UPU Parallel Mechanism

Author:

Zhao Chen12,Chen Ziming12,Li Yanwen12,Huang Zhen12

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;

2. Hebei Provincial Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei 066004, China

Abstract

Abstract In this paper, a novel 3-UPU (P and U stand for prismatic and universal joints, respectively) parallel mechanism (PM) and its variant PM are proposed. Both of them have two rotational and one translational (2R1T) degrees of freedom (DOFs) without involving any parasitic motion. Mobility analysis shows that the three constraint forces provided by three limbs of the mechanism are located on the same plane and the mobile platform can translate perpendicular to this plane and rotate around any axis on it. Analysis of the mechanism’s motion characteristics demonstrates that the mobile platform outputs either pure rotation or pure translation. Moreover, the rotational axis can be fixed during the rotation process, which means no parasitic motion is involved. The causes of the motion characteristics are analyzed by the combination of an overall Jacobian matrix, a statistical method, and a geometric method. The PMs only need to translate or rotate once to move from the initial configuration to the final configuration, which allows for easy control of speeds. The relationship between mechanism parameters and singularity is analyzed. A speed control method for the PMs is proposed and a prototype is designed and made. Experiments are conducted to verify the determined motion characteristics, the speed control method, and the singularity analysis.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3