Abstract
This paper is aimed at presenting a study on the kinematics of the Tricept robot,
which comprises a three-degree-of-freedom (dof) parallel structure having a radial link of variable length. The robot workspace is characterized and the inverse kinematics equation is obtained by using spherical coordinates. The inverse differential kinematics and statics are derived in terms of both an analytical and a geometric Jacobian, and a manipulability analysis along the various workspace directions is developed using the concept of force and velocity ellipsoids. A Jacobian-based Closed-Loop Direct Kinematics (CLDK) algorithm is presented to solve the direct kinematics problem along a given trajectory. Simulation results are illustrated for an industrial robot of the Tricept family.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
187 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献