Characteristics of Heat Transfer in Impinging Jets by Control of Vortex Pairing

Author:

Cho H. H.1,Lee C. H.1,Kim Y. S.1

Affiliation:

1. Yonsei University, Seoul, Korea

Abstract

The present study is conducted experimentally to obtain heat transfer characteristics on the impingement surface for controlled jets. Counterflowing or coflowing stream around the jet periphery is used to control the jet at the nozzle lip. The characteristics of flow and heat transfer are studied on two different jet nozzle exit flow conditions, including a fully developed turbulent tube flow and an uniform velocity distribution flow. The experiments are carried out for nozzle-to-plate distances of 2 to 8 nozzle diameters, jet Reynolds numbers in the range of 10,000 to 70,000, and main and secondary flow velocity ratios, R = ΔU/2Ū, of 0.45 to 1.86. The secondary counter- and co-flows change the flow instability conditions in the shear layers resulting in changes of heat transfer on the impingement surface. For secondary counterflows, heat transfer on the impingement surface is changed little for the small nozzle-to-plate distance of H/D = 2, but is enhanced on the stagnation region with reduction on the secondary peak region for H/D = 4. Augmentation of heat transfer on the stagnation region increases with increasing jet Reynolds numbers. For secondary coflows, the jet potential core extends far downstream due to inhibited development of the vortices, but the heat transfer is reduced significantly and the secondary peak appears downstream with increasing blowing rates.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3