A Fast Analytical Method for the Dynamic Energy Simulation of Energy Piles With Short Time Resolution

Author:

Grassi Walter1,Conti Paolo1,Schito Eva1,Testi Daniele1

Affiliation:

1. Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, Pisa 56122, Italy

Abstract

Abstract This paper proposes an analytical method for the dynamic thermal simulation of energy piles with a short time resolution (e.g., tens of minutes) as an alternative to numerical approaches, which require relevant computational resources. The discussion is tailored to the implementation of analytical models in dynamic energy simulation software for buildings and HVAC systems. The main modeling challenges consist of accounting for the pile thermal capacity, configuration of pipes, and time-varying inlet temperature and flow rate values. The heat transfer process occurs in three characteristic periods, each of them characterized by a 2D or 3D geometry. The first period concerns the evolution of the fluid temperature and heat transfer over the length of the pipes, the second period concerns the thermal diffusion within the heat capacity of the foundation, and the third period is driven by pile geometry and ground source characteristics. For short time resolution analyses, we proposed a general linear set of equations based on the ε-NTU theory for heat exchangers, the infinite composite-medium line source solution, and the finite line source for the ground source. The proposed method is compared with a full transient 3D numerical simulation. The maximum deviation in terms of return temperature to the heat pump is 0.2 K. The general dimensionless form, the short time resolution, and the limited computational time makes the method suitable for building simulation software and optimization codes for thermal analysis and energy pile design.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3