Design and optimization of ground‐coupled refrigeration heat exchanger in Dubai: Numerical approach

Author:

Kahwaji Ghalib Y.1,Capuano Davide2,Boudekji Giada2,Samaha Mohamed A.13ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering Rochester Institute of Technology‐Dubai Dubai United Arab Emirates

2. Graded S.p.A Naples Italy

3. School of Mathematical Sciences Rochester Institute of Technology Rochester New York USA

Abstract

AbstractGround‐coupled heat exchangers (GCHE) have received significant attention over several decades as a result of increasing the world's energy demand and the need for reducing fossil fuels consumption. Prior studies have demonstrated the effectiveness of utilizing GCHE with refrigeration and heating systems. However, optimizing the performance of GCHE coupled with chillers for heat rejection, especially in extreme hot‐humid climates (where cooling towers are not very effective) is lacking in the literature. In this work, a ground borehole fitted with a coaxial‐tubes heat exchanger (BHE) is numerically simulated. Based on a wide range of data collected for the soil of Dubai, its real in situ thermophysical properties are characterized. The soil's upper layer thickness is relatively small and dry that operates in conduction mode, while the lower one is water‐saturated that works in coupled conduction‐advection mode. The study aims at optimizing the parameters advancing heat rejection into ground considering the actual properties of the soil of Dubai. The results indicate that the more feasible high‐density polyethylene pipes can perform as good as the steel ones. Also, a great finding based on the presented novel design is that insulating the inner pipe can increase the temperature duty by 55%. The proposed design of BHE is relatively inexpensive, more feasible and efficient, which is achieved for the first time based on a deep analysis of Dubai climate and soil. This makes the technology ready to be implemented for industrial applications in Dubai and other regions having a similar climate and soil nature.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3