On the Barber Boundary Conditions for Thermoelastic Contact

Author:

Comninou Maria1,Dundurs J.2

Affiliation:

1. Department of Applied Mechanics and Engineering Science, University of Michigan, Ann Arbor, Mich. 48109

2. Department of Civil Engineering, Northwestern University, Evanston, Ill. 60201

Abstract

A dilemma arising from the conventional boundary conditions for thermoelastic contact was observed by Barber in treating the indentation of an elastic half space by a rigid sphere. If the sphere is colder than the half space, the interface tractions are necessarily tensile near the periphery of the contact region. In order to overcome this difficulty, Barber introduced the idea of an imperfect contact zone. An asymptotic analysis of the transitions between the different zones is carried out in this article. It is found that, if heat flows into the body with the larger distortivity, a direct transition from perfect contact (no resistance to heat flow) to separation (no heat flow) is possible, the zone of imperfect contact (vanishing contact pressure and some resistance to heat flow) is automatically excluded, and the heat flux is square-root singular at the transition. If heat flows in the opposite direction, no direct transition from perfect contact to separation is possible, there must be an intervening zone of imperfect contact, and the heat flux is logarithmically singular at the transition from perfect to imperfect contact. The transition from imperfect contact to separation is always possible, and it is smooth. These conclusions are direct consequences of the inequalities that must be enforced because of the unilateral nature of thermoelastic contact.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3