Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts

Author:

Ren Ning1,Zhu Dong2,Chen W. W.1,Wang Q. Jane1

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Abstract

Elastohydrodynamic lubrication (EHL) is an important branch of the lubrication theory, describing lubrication mechanisms in nonconformal contacts widely found in many mechanical components such as various gears, rolling bearings, cams and followers, metal-rolling tools, traction drives, and continuous variable transmissions. These components often transmit substantial power under heavy loading conditions. Also, the roughness of machined surfaces is usually of the same order of magnitude as, or greater than, the estimated average EHL film thickness. Consequently, most components operate in mixed lubrication regime with significant asperity contacts. Due to very high pressure concentrated in small areas, resulted from either heavy external loading or severe asperity contacts, or often a combination of both, subsurface stresses may exceed the material yield limit, causing considerable plastic deformation, which may not only permanently change the surface profiles and contact geometry but also alter material properties through work hardening as well. In the present study, a three-dimensional plasto-elastohydrodynamic lubrication (PEHL) model has been developed by taking into account plastic deformation and material work-hardening. The effects of surface/subsurface plastic deformation on lubricant film thickness, surface pressure distribution, and subsurface stress field have been investigated. This paper briefly describes the newly developed PEHL model and presents preliminary results and observed basic behavior of the PEHL in smooth-surface point contacts, in comparison with those from corresponding EHL solutions under the same conditions. The results indicate that plastic deformation may greatly affect contact and lubrication characteristics, resulting in significant reductions in lubricant film thickness, peak surface pressure and maximum subsurface stresses.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference23 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3