A Full Numerical Solution to the Mixed Lubrication in Point Contacts

Author:

Hu Yuan-Zhong1,Zhu Dong2

Affiliation:

1. Department of Mechanical Engineering, Oakland University, Rochester, MI 48309

2. Eaton Corporation, 26201 Northwestern Highway, Southfield, MI 48037

Abstract

A full numerical solution for the mixed elastohydrodynamic lubrication (EHL) in point contacts is presented in this paper, using a new numerical approach that is simple and robust, capable of handling three-dimensional measured engineering rough surfaces moving at different rolling and sliding velocities. The equation system and the numerical procedure are unified for a full coverage of all the lubrication regions including the full film, mixed and boundary lubrication. In the hydrodynamically lubricated areas the Reynolds equation is used. In the asperity contact areas, where the film thickness is zero, the Reynolds equation is reduced to an expression equivalent to the mathematical description of dry contact problem. In order to save computing time, a multi-level integration method is used to calculate surface deformation. Sample cases under severe condition show that this approach is capable of analyzing different cases in a full range of λ ratio, from infinitely large down to nearly zero (less than 0.03). [S0742-4787(00)00101-6]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 439 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3