Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood

Author:

Li Jinhu12,Burra Kiran G.2,Wang Zhiwei34,Liu Xuan35,Gupta Ashwani K.2

Affiliation:

1. College of Safety and Engineering, Anhui University of Science and Technology, Huainan 232001, China;

2. The Combustion Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

3. The Combustion Laboratory, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742;

4. College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China

5. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Abstract Biomass gasification in CO2 is a promising thermochemical pathway to assist with growing issues of CO2 in the environment. However, high reaction temperature requirement and the low reaction rate is limiting its development. To resolve these issues, the effect of acid and alkali pretreatment on the pyrolysis and CO2 gasification of pinewood was examined using a semi-batch reactor. The temporal behavior of syngas components, energy, and their yield, and energy efficiency was quantified. Results showed that the decreased alkali and alkaline earth metal (AAEM) content using acid pretreatment was beneficial for the CO and syngas yield, while the effect of the increased AAEM content using alkali pretreatment provided a converse trend. In contrast, CO2-assisted gasification of alkali-pretreated biomass improved the CO and syngas yield due to the catalytic influence of AAEM on the Boudouard reaction, while the acid-washed biomass yielded the lowest syngas yield. During gasification, the syngas yield, energy yield, and overall energy efficiency were enhanced by 83.4 (by wt%), 44.6 (by wt%), and 44.6%, respectively, using alkali pretreatment. The results revealed that alkali pretreatment is an effective catalytic incorporation pathway to improve the syngas, energy output, and reactivity to CO2 gasification.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3