Thermochemical Co-Liquefaction of Fruit Pomace’s Blends in a Binary Solvent System Toward Value-Added Bioproducts

Author:

Wądrzyk Mariusz1,Janus Rafał1,Korzeniowski Łukasz1,Plata Marek1

Affiliation:

1. AGH University of Krakow Faculty of Energy and Fuels, , al. Adama Mickiewicza 30, Krakow 30-059 , Poland

Abstract

Abstract Poland belongs to the most meaningful producers of fresh food products in the European Union, e.g., apples, cherries, carrots, as well as currants. A significant part of these products are subjected to further processing, which results in the generation of an abundant amount of wet residues, such as pomace. The present paper aims to investigate the possibility of co-processing various industrial residues in the form of fruit pomaces through thermochemical liquefaction toward high-energy-density biocrude and biochar. More specifically, industrial wastes received from commercial juice production, i.e., blackcurrant, apple, and cherry pomaces, were converted under subcritical conditions of the water-isopropyl alcohol solvent system at fixed conditions. Particular focus was put on testing binary and ternary mixture feedstock systems and the possibility of predicting the bioproduct yield. Furthermore, the quality of the resultant biocrudes was analyzed by means of FTIR, GC-MS, and elemental analysis. For all separately studied raw materials and their binary and ternary mixtures, the dominant group fraction was biocrude with its yield ranging between 45.8 and 54.5 wt%. Produced liquids exhibit high energy density (HHV between 30.1 and 32.4 MJ/kg); thus, all of them pose perspective alternative fuels for generating heat and electricity. Also, the solid biochars presented a high energy density (HHV around 24–26 MJ/kg) and can be considered as an alternative energy carrier. The postulated approach aims to increase the flexibility and profitability of future technology of processing useless waste toward value-added bioproducts for the chemical and energy sectors.

Funder

Narodowe Centrum Badan i Rozwoju

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Poland—Key Energy Statistics;International Energy Agency,2023

2. Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation;Davies;ASME J. Energy Resour. Technol.,2014

3. Chemical Routes for the Transformation of Biomass Into Chemicals;Corma Canos;Chem. Rev.,2007

4. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers;Isikgor;Polym. Chem.,2015

5. The Path Forward for Biofuels and Biomaterials;Ragauskas;Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3