Review of Hydraulic Roughness Scales in the Fully Rough Regime

Author:

Flack Karen A.1,Schultz Michael P.2

Affiliation:

1. Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD 21402

2. Department of Naval Architecture and Ocean Engineering, United States Naval Academy, Annapolis, MD 21402

Abstract

A review of predictive methods used to determine the frictional drag on a rough surface is presented. These methods utilize a wide range of roughness scales, including roughness height, pitch, density, and shape parameters. Most of these scales were developed for regular roughness, limiting their applicability to predict the drag for many engineering flows. A new correlation is proposed to estimate the frictional drag for a surface covered with three-dimensional, irregular roughness in the fully rough regime. The correlation relies solely on a measurement of the surface roughness profile and builds on previous work utilizing moments of the surface statistics. A relationship is given for the equivalent sandgrain roughness height as a function of the root-mean-square roughness height and the skewness of the roughness probability density function. Boundary layer similarity scaling then allows the overall frictional drag coefficient to be determined as a function of the ratio of the equivalent sandgrain roughness height to length of the surface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 263 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3