Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall

Author:

LEE SEUNG-HYUN,SUNG HYUNG JIN

Abstract

The effects of surface roughness on a spatially developing turbulent boundary layer (TBL) are investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range Reθ = 300 ∼ 1400. The roughness elements were periodically arranged two-dimensional spanwise rods, and the roughness height was k = 1.5θin, where θin is the momentum thickness at the inlet, which corresponds to k/δ = 0.045 ∼ 0.125, δ being the boundary layer thickness. To avoid generating a rough-wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed 80θin downstream from the inlet. The spatially developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value, and self-preserving forms of the turbulent Reynolds stress tensors were obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent Reynolds stress tensors in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3