Heat and Mass Transfer Mechanisms in Sublimation Dehydration

Author:

Dyer D. F.1,Sunderland J. E.2

Affiliation:

1. Department of Mechanical Engineering, Auburn University, Auburn, Ala.

2. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, N. C.

Abstract

An analytical study is presented for sublimation dehydration which shows the effect of the important mechanisms involved in the process. The effects of the presence of a binary gas mixture are considered. The boundary conditions for this solution are all directly controllable external conditions; namely, the temperature, total pressure, water-vapor partial pressure at the heated surface, and the temperature of the face opposite to the heated surface. The analysis involves the simultaneous solution of the appropriate equations of continuity, momentum, and energy, as well as the equation of state for each of the gas components present. Typical results are given for freeze-drying of bovine muscle. The drying rate is seen to increase with decreasing total pressure and water-vapor concentration. The relative importance of diffusional transport compared with bulk transport is presented. It is shown that drying rates can be substantially increased by judiciously making use of heat transfer through the frozen region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3