Preheating Effects on Compression Ignition Engine Through Waste Heat Recovery Using THNF-Based Radiator Coolant: An Experimental Study

Author:

Kumar Vikash1,Sahoo RashmiRekha1

Affiliation:

1. Indian Institute of Technology (BHU) Department of Mechanical Engineering, , Varanasi 221005 , India

Abstract

Abstract The present paper focuses on the thermohydraulic performance of a car radiator using Al2O3, CuO, and TiO2 nanoparticles disseminated in an equal fraction in the range of 0.06–0.12% called Ternary hybrid nanofluid (THNF), in water-based fluid, operated at coolant flowrate (CFR) range of 3–8 lpm and fan air velocity of 0.25–1.25 m/s). Moreover, a detailed accentuation has been given on the extensive nanofluid characterization mainly thermophysical properties and its stability, to justify nanofluid durability for the long run (scanning electron microscope, Zeta potential). Performance evaluation criteria (PEC) and friction factors were analyzed to evaluate the penalty in pressure drop for the heat transfer enhancement achieved. The experimental analysis revealed a maximum heat transfer enhancement in the coolant of 14.2% at CFR of 6lpm using 0.12% vol. fraction of THNF. The PEC value found within the limit of 1.0045–1.098 indicates a remarkable heat transfer enhancement on nanoparticle addition. Concurrently fuel elevated temperature improved thermal efficiency by 13.6% at 0.25 m/s of frontal air velocity during a maximum fuel-saving of 14.28% at 50% load on the engine. Hence, the preheating of fuel through the radiator waste heat improves the thermal efficiency, lowers the brake-specific fuel consumption, and saves fuel consumption successfully.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3