The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures

Author:

Wang Ziyu1,Bai Ziwei2,Yu Guangying2,Yelishala Sai2,Metghalchi Hameed2

Affiliation:

1. Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115 e-mail:

2. Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115

Abstract

Syngas has gained attention recently due to its high energy density and environmentally friendly characteristics. Flame stability plays an important role in flame propagation in energy conversion devices. Experimental studies were performed in a cylindrical chamber to investigate flame instability of syngas/air/diluent mixture. A Z-shape Schlieren system coupled with a high-speed complementary metal–oxide–semiconductor camera was used to record flame pictures up to 40,000 frames per second. In this research, syngas is a mixture of hydrogen and carbon monoxide and diluent is a blend of 14% CO2 and 86% N2 with the same specific heat as the burned gases. Three main flame instabilities namely Rayleigh–Taylor (body force) instability, hydrodynamic instability, and thermal-diffusive instability have been studied. For the onset of flame instability, a power law correlation for the ratio of critical pressure to initial pressure of syngas/air/diluent flames over a wide range of initial temperatures (298–450 K), initial pressures (1.0–2.0 atm), equivalence ratios (0.6–3.0), diluent concentrations (0–10%), and hydrogen percentages (5–25%) in the fuel has been developed.

Funder

Qatar National Research Fund

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3