Using Shock Control Bumps to Improve Transonic Fan/Compressor Blade Performance

Author:

John Alistair1,Qin Ning1,Shahpar Shahrokh2

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK e-mail:

2. Rolls-Royce, Derby DE24 8BJ, UK e-mail:

Abstract

Shock control bumps can help to delay and weaken shocks, reducing loss generation and shock-induced separation and delaying stall inception for transonic turbomachinery components. The use of shock control bumps on turbomachinery blades is investigated here for the first time using 3D analysis. The aerodynamic optimization of a modern research fan blade and a highly loaded compressor blade is carried out using shock control bumps to improve their performance. Both the efficiency and stall margin of transonic fan and compressor blades may be increased through the addition of shock control bumps to the geometry. It is shown how shock-induced separation can be delayed and reduced for both cases. A significant efficiency improvement is shown for the compressor blade across its characteristic, and the stall margin of the fan blade is increased by designing bumps that reduce shock-induced separation near to stall. Adjoint surface sensitivities are used to highlight the critical regions of the blade geometries, and it is shown how adding bumps in these regions improves blade performance. Finally, the performance of the optimized geometries at conditions away from where they are designed is analyzed in detail.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. The Design of an Advanced Civil Fan Rotor;Ginder;ASME J. Turbomach.,1987

2. Three-Dimensional Shock Structures for Transonic/Supersonic Compressor Rotors;Prince;J. Aircraft,1980

3. Novel Compressor Blade Shaping Through a Free-Form Method;John;ASME J. Turbomach.,2017

4. Theoretical Aspects of Dromedaryfoil;Tai,1977

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3