Novel Compressor Blade Shaping Through a Free-Form Method

Author:

John Alistair1,Shahpar Shahrokh2,Qin Ning1

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK e-mail:

2. Rolls-Royce plc., Derby DE24 8BJ, UK e-mail:

Abstract

This paper describes the use of the free-form-deformation (FFD) parameterization method to create a novel blade shape for a highly loaded, transonic axial compressor. The novel geometry makes use of precompression (via an S-shaping of the blade around midspan) to weaken the shock and improve the aerodynamic performance. It is shown how free-form-deformation offers superior flexibility over traditionally used parameterization methods. The novel design (produced via an efficient optimization method) is presented and the resulting flow is analyzed in detail. The efficiency benefit is over 2%, surpassing other results in the literature for the same geometry. The precompression effect of the S-shape is analyzed and explained, and the entropy increase across the shock (along the midblade line) is shown to be reduced by almost 80%. Adjoint surface sensitivity analysis of the datum and optimized designs is presented, showing that the S-shape is located in the region predicted to be most significant for changes in efficiency. Finally, the off-design performance of the blade is analyzed across the rotor characteristics at various speeds.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3