Experimental Analysis and Modeling of a Novel Thermosyphon System for Electronics Cooling

Author:

Cataldo Filippo1,Crea Yuri Carmelo1

Affiliation:

1. Micro Technologies Department, Provides Metalmeccanica S.r.l., Via Piave 82, Latina 04100, Italy

Abstract

Abstract In an era of ever-growing digitalization, the absorbed power of processing units is becoming an actual challenge for cooling systems. The effectiveness is imperative, but compactness and passiveness are driving factors in the design as well. The goal of this paper is twofold: (1) to present a detailed experimental campaign on a thermosyphon system for high-heat-load electronics and (2) to propose a model of the thermosyphon system using a Machine Learning approach. The thermosyphon system is composed of a microchannel evaporator plate directly attached to the heat-generating device and an air-cooled multiport condenser. The height between the evaporator and condenser inlets is 12 cm. The condenser is also proposed in two solutions: the first one has a footprint heat exchange area of 180 × 120 mm2, which allows a single fan's placement; the second one has a footprint area of 240 × 120 mm2, allowing the placement of two fans. The working fluid used in the system is R1234ze(E) with different charges. The experimental results show that the single-fan condenser reached a maximum heat rejection of 330 W, corresponding to a heat flux of 21.9 W/cm2. The double-fan condenser bore a maximum heat rejection of 570 W (37.7 W/cm2). The model, constructed purely via a machine learning tool, shows a satisfactory agreement between experimental and predicted data.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-phase modeling for porous micro-channel evaporators;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

2. Experimental Characterization of a Compact Thermosyphon Cooling System Operating with R1234ze(E) and R1233zd(E) Low-GWP Refrigerants;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

3. Experimental Analysis of a Dual-Evaporator Thermosyphon Cooling System for CPUs and GPUs;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3