Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part II—Aerodynamic Measurements in the Rotational Frame

Author:

McLean Christopher1,Camci Cengiz1,Glezer Boris2

Affiliation:

1. Turbomachinery Heat Transfer Laboratory, The Pennsylvania State University, University Park, PA 16802

2. Optimized Turbine Solutions, 4140 Calle Isabelino, San Diego, CA 92130

Abstract

The current paper deals with the aerodynamic measurements in the rotational frame of reference of the Axial Flow Turbine Research Facility (AFTRF) at the Pennsylvania State University. Stationary frame measurements of “Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High Pressure Turbine Stage” were presented in Part I of this paper. The relative aerodynamic effects associated with rotor–nozzle guide vane (NGV) gap coolant injections were investigated in the rotating frame. Three-dimensional velocity vectors including exit flow angles were measured at the rotor exit. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the stage main stream flow for root injection, radial cooling, and impingement cooling. Current measurements show that even a small quantity (1 percent) of cooling air can have significant effects on the performance and exit conditions of the high-pressure turbine stage. Parameters such as the total pressure coefficient, wake width, and three-dimensional velocity field show significant local changes. It is clear that the cooling air disturbs the inlet end-wall boundary layer to the rotor and modifies secondary flow development thereby resulting in large changes in turbine exit conditions. Effects are the strongest from the hub to midspan. Negligible effect of the cooling flow can be seen in the tip region.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3