Bridging Data Gaps: A Federated Learning Approach to Heat Emission Prediction in Laser Powder Bed Fusion

Author:

Lei Rong1,Guo Y. B.2,Yan Jiwang3,Guo Weihong “Grace”1

Affiliation:

1. Rutgers University, New Brunswick Department of Industrial and Systems Engineering, , Piscataway, NJ 08854

2. Rutgers University, New Brunswick New Jersey Advanced Manufacturing Institute, , Piscataway, NJ 08854

3. Keio University Department of Mechanical Engineering, , Yokohama 223-8522 , Japan

Abstract

Abstract Deep learning has impacted defect prediction in additive manufacturing (AM), which is important to ensure process stability and part quality. However, its success depends on extensive training, requiring large, homogeneous datasets—remaining a challenge for the AM industry, particularly for small- and medium-sized enterprises (SMEs). The unique and varied characteristics of AM parts, along with the limited resources of SMEs, hamper data collection, posing difficulties in the independent training of deep learning models. Addressing these concerns requires enabling knowledge sharing from the similarities in the physics of the AM process and defect formation mechanisms while carefully handling privacy concerns. Federated learning (FL) offers a solution to allow collaborative model training across multiple entities without sharing local data. This article introduces an FL framework to predict section-wise heat emission during laser powder bed fusion (LPBF), a vital process signature. It incorporates a customized long short-term memory (LSTM) model for each client, capturing the dynamic AM process's time-series properties without sharing sensitive information. Three advanced FL algorithms are integrated—federated averaging (FedAvg), FedProx, and FedAvgM—to aggregate model weights rather than raw datasets. Experiments demonstrate that the FL framework ensures convergence and maintains prediction performance comparable to individually trained models. This work demonstrates the potential of FL-enabled AM modeling and prediction where SMEs can improve their product quality without compromising data privacy.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3