A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing

Author:

Tapia Gustavo1,Elwany Alaa2

Affiliation:

1. Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843 e-mail:

2. Assistant Professor Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

There is consensus among both the research and industrial communities, and even the general public, that additive manufacturing (AM) processes capable of processing metallic materials are a set of game changing technologies that offer unique capabilities with tremendous application potential that cannot be matched by traditional manufacturing technologies. Unfortunately, with all what AM has to offer, the quality and repeatability of metal parts still hamper significantly their widespread as viable manufacturing processes. This is particularly true in industrial sectors with stringent requirements on part quality such as the aerospace and healthcare sectors. One approach to overcome this challenge that has recently been receiving increasing attention is process monitoring and real-time process control to enhance part quality and repeatability. This has been addressed by numerous research efforts in the past decade and continues to be identified as a high priority research goal. In this review paper, we fill an important gap in the literature represented by the absence of one single source that comprehensively describes what has been achieved and provides insight on what still needs to be achieved in the field of process monitoring and control for metal-based AM processes.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference185 articles.

1. Wohlers, T. T., 2013, Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, CO.

2. Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing,2009

3. Development and Implementation of Metals Additive Manufacturing,2011

4. Measurement Science Roadmap for Metal-Based Additive Manufacturing,2013

Cited by 527 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3