Modeling and Numerical Analysis of Compression Molding of Three-Dimensional Thin Parts With Curing Process

Author:

Kwon T. H.1,Kim C. S.1

Affiliation:

1. Department of Mechanical Engineering, Pohang University of Science and Technology, San 31 Hyojadong, Pohang, 790-784, Korea

Abstract

A numerical modeling is proposed for the simulation of flow, heat transfer, and reaction kinetics during the compression molding of three-dimensional thin parts. A nonisothermal, non-Newtonian model including the kinetic equation for a curing mechanism of thermosetting materials is implemented in a computer program, and a finite element method is used to simulate a preheating, a filling, and a post-heating stage during the entire compression molding process. As a more rigorous approach, a moving boundary condition due to the drag motion of an upper mold of a nonplanar shape or due to an apparent slip phenomena of particle filled materials is introduced into the present modeling, resulting in a new governing equation and the corresponding finite element formulation. Verifications of the analysis program were performed with a simple geometry for the Newtonian and non-Newtonian isothermal cases, in which the numerical results are found to be in good agreement with theoretical results. Effects of the moving boundary condition and processing conditions, such as thickness of compression molded parts, mold closing velocity and the preheating stage on overall compression molding processing, are numerically investigated. Numerical results for a car fender are also presented as an example of industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molding: Compression;Wiley Encyclopedia of Composites;2012-07-20

2. Numerical Simulation of Compression Molding of UHMWPE;International Polymer Processing;2000-05

3. Numerical Simulation of Compression Molding of UHMWPE;International Polymer Processing;2000-04-01

4. Heat transfer—a review of 1995 literature;International Journal of Heat and Mass Transfer;1999-08

5. Finite-element analysis and simulation of polymers: a bibliography (1976 - 1996);Modelling and Simulation in Materials Science and Engineering;1997-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3