Analysis of Turbulent Swirling Flow in an Isothermal Gas Turbine Combustor Model

Author:

Benim A. C.1,Iqbal S.1,Nahavandi A.1,Meier W.2,Wiedermann A.3,Joos F.4

Affiliation:

1. Düsseldorf University of Applied Sciences, Düsseldorf, Germany

2. German Aerospace Centre (DLR), Stuttgart, Germany

3. MAN Diesel & Turbo SE, Oberhausen, Germany

4. Helmut Schmidt University, Hamburg, Germany

Abstract

Isothermal turbulent swirling flow in a model combustor is computationally and experimentally investigated. The main purpose was the validation of turbulence models for this flow type. The experiments were carried out at the German Aerospace Centre (DLR), Stuttgart. For the modeling, the validation of the LES approach, applying the Smagorinsky subgrid-scale model, using wall-functions, takes a central role in the present study. URANS calculations based on SST and RSM were also performed. An analysis for LES showed that a sufficient resolution is indeed obtained for grid index values proposed in the literature. It was also observed that coarser grids can still deliver useful results. LES results were observed to be quite accurate, except the swirl velocity in the outer parts of the jet, which was under-predicted. URANS results were not that good, whereas the RSM performed better than the SST, especially in predicting the swirl velocity in the outer parts. An investigation performed on different domain sizes indicated that the outlet boundary formulation has some influence on the prediction of the upstream flow. The influence of the differencing scheme on LES was also investigated.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3