Optimization of the Hole Exit Shaping of Film Holes Without and With Compound Angles for Maximal Film Cooling Effectiveness

Author:

Chi Zhongran1,Li Xueying1,Han Chang1,Ren Jing1,Jiang Hongde1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

Shaped film holes can achieve higher film cooling effectiveness compared with the simple cylindrical film holes. According to former studies, the geometry of the shaped film holes has significant influence on the cooling performance. In order to maximize the film cooling effectiveness of the shaped holes, a two-level design optimization methodology of the hole exit shaping is developed in the present study. The optimization methodology consists of a parametric design and CFD mesh generation tool called Coolmesh, a RANS CFD solver, a database of film cooling effectiveness distributions, a metamodel, and a genetic algorithm (GA) for evolutionary optimization. A binary parametric representation of the 2D hole exit shaping is initiated based on the B-spline methods. The metamodel can efficiently predict the detailed distribution of film cooling effectiveness using the CFD results in the database, which is continuously updated for higher accuracy. In each first-level iteration, a second-level GA optimization search is carried out coupled with the metamodel, and then the optimal geometry is evaluated using CFD methods and added to the database. An anisotropic turbulence model is applied to the CFD solver for higher accuracy according to a detailed experimental validation using PSP measurements. In the present study, three design optimizations of the shaped holes without and with compound angles are carried out on a flat plate. The optimization methodology can efficiently find the optimal geometries of shaped holes using only hundreds of CFD runs. For the shaped holes with compound angle, the optimized geometry can generate a back flow vortex which interacts with the shear vortex and weakens the mixing of coolant and hot gas, resulting in a higher film cooling effectiveness on the plate.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3