Large Eddy Simulation of the Elliptic Jets in Film Cooling Controlled by Dielectric Barrier Discharge Plasma Actuators With an Improved Model

Author:

Yu Jianyang1,Wang Zhao2,Chen Fu3,Yan Guojun4,Wang Cong1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. School of Energy Science and Technology, Harbin Institute of Technology, Harbin 150001, China

3. Beijing Institute of Astronautical Systems Engineering, Harbin Institute of Technology, Harbin 150001, China

4. School of Energy Science and Technology, Beijing Institute of Astronautical Systems Engineering, Beijing 10071, China

Abstract

The dielectric barrier discharge (DBD) plasma actuator, in which electrodes are asymmetric arranged, has already demonstrated its ability in flow control. In the present work, the configuration of DBD plasma actuator defined as DBD-vortex generator (VGs), which can induce streamwise vortices, has been employed in the flow control of the inclined jet in crossflow. The coherent turbulent structures around the cooling hole are examined by the large eddy simulation (LES) method with the improved plasma model. The mechanism of coherent structure controlled by the DBD-VGs is also elucidated in the processes of parametric study with the actuation conditions. The calculation results show that the DBD-VGs provides us an effective approach to further enhance the performance of the film cooling. When it is applied into the flow, symmetrical streamwise vortices are induced to break down the coherent vortex structure, leading to more coolant gathered on the surface, especially at the lateral area of the coolant jet. What is more, an overall improvement of the film cooling performance can be obtained when the actuation strength is strong enough.

Funder

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3