Minimum Environmental Load Reduction in Heavy Duty Gas Turbine by Bleeding Lines

Author:

Cioffi Marco1,Piola Stefano1,Puppo Enrico1,Silingardi Andrea1,Bonzani Federico1

Affiliation:

1. Ansaldo Energia, Genova, Italy

Abstract

The power generation and energy market scenarios are requiring the power generation plants to fulfill more flexible operations respect to the recent past. One of the main concerns of plant operators is the lowering of minimum load at which the machines can be exercised while respecting the pollution limits. A strategy to improve minimum turndown capability by reducing the minimum environmental load of heavy duty axial gas turbines is here presented: it is based on the use of the compressor air bleeding lines (blow-off lines). The described technical development activities are based on the numerical modeling of blow-off lines and bleeding compressor sections; these preliminary tasks have been followed by on-field plant testing. The blow-off lines modeling reserves a particular regard, due to the somehow non-usual fluid dynamics involved. A Fanno flow 1D approach has been adopted to properly model the bleeding lines fluid flow whereas full 3D numerical solutions have been developed to get a better insight of the bleeding plenums and of the line sector including the valve. In addition, the gas turbine components off-design behavior and the overall performances are computed by the Ansaldo modular simulation code. Numerical analysis and performed field tests are here presented and results are compared, showing a good agreement, in accord to the simplified model adopted. Additional comparisons with different alternative strategies are finally presented in terms of gas turbine power and excess air variation. The described technique by blow-off lines opening shows to be able to fulfill the required task by incrementing the plant operative flexibility and guaranteeing safe plant operation. The technique drawbacks are a gas turbine slightly lower efficiency and the lower output flue gas temperature, whose relative importance have to evaluate by the plant operators. At present the long term sustainability of the new operative condition is the object of a deeper and longer field testing phase.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3