Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions

Author:

Ricci MartinaORCID,Benvenuto Marcello,Mosele Stefano GinoORCID,Pacciani RobertoORCID,Marconcini MicheleORCID

Abstract

The increasing importance of renewable energy capacity in the power generation scenario, together with the fluctuating consumer energy demand, forces conventional fossil fuel power generation systems to promptly respond to relevant and rapid load variations and to operate under off-design conditions during a major fraction of their lives. In order to improve existing power plants’ flexibility in facing energy surplus or deficit, retrofittable solutions for gas turbine compressors are proposed. In this paper, two different operation strategies, variable inlet guide vanes (IGVs) and blow-off extraction (BO), are considered for enabling partial load and minimum environmental load operation, and thus to identify implementation opportunities in existing thermal power plants. A typical 15-stage F-class gas turbine compressor is chosen as a test case and some energy demand scenarios are selected to validate the adopted solutions. The results of an extensive 3D, steady, CFD analysis are compared with the measurements coming from an experimental campaign carried out in the framework of the European Turbo-Reflex project. It will be shown how the combined strategies can reduce gas turbine mass flow rate and power plant output, without significantly penalizing efficiency, and how such off-design performance figures can be reliably predicted by employing state-of-the-art CFD models.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turn-Down Capability of Ansaldo Energia's AE94.3A;Journal of Engineering for Gas Turbines and Power;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3